Sorry, you need to enable JavaScript to visit this website.

Gold branched nanoparticles for cellular treatments

TitoloGold branched nanoparticles for cellular treatments
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione2012
AutoriSironi, L., Freddi S., Caccia M., Pozzi P., Rossetti L., Pallavicini P., Donà A., Cabrini E., Gualtieri Maurizio, Rivolta I., Panariti A., Dalfonso L., Collini M., and Chirico G.
RivistaJournal of Physical Chemistry C
Volume116
Paginazione18407-18418
ISSN19327447
Parole chiaveAnisotropy, Cell imaging, Cell interaction, Cellular uptake, Controlled drug delivery, Fluorescence Correlation Spectroscopy, fluorescence spectroscopy, Gold, Gold Nanoparticles, Gold nanorod, Infrared devices, Infrared radiation, Intracellular dynamics, Luminescence, Nanoparticles, Nanorods, Near infrared region, Near-infrared radiations, Particle tracking, Photons, Photothermal therapy, Shape anisotropy, Thermal efficiency, Two-photon luminescence
Abstract

Under the action of near-infrared radiation, shape anisotropic gold nanoparticles emit two-photon luminescence and release heat. Accordingly, they have been proposed for imaging, photothermal therapies and thermo-controlled drug delivery. In all these applications particular care must be given to control the nanoparticle - cell interaction and the thermal efficiency of the nanoparticles, while minimizing their intrinsic cytotoxicity. We present here the characterization of the cell interaction of newly developed branched gold nanostars, obtained by laurylsulfobetaine-driven seed-growth synthesis. The study provides information on the size distribution, the shape anisotropy, the cellular uptake and cytotoxicity of the gold nanostars as well as their intracellular dynamic behavior by means of two-photon luminescence imaging, fluorescence correlation spectroscopy and particle tracking. The results show that the gold nanostars are internalized as well as the widely used gold nanorods and are less toxic under prolonged treatments. At the same time they display remarkable two-photon luminescence and large extinction under polarized light in the near-infrared region of the spectrum, 800-950 nm. Gold nanostars appear then a valuable alternative to other elongated or in-homogeneous nanoparticles for cell imaging. © 2012 American Chemical Society.

Note

cited By 27

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84865740815&doi=10.1021%2fjp305021k&partnerID=40&md5=9655a7843383985a4ba7c74e21ba90f4
DOI10.1021/jp305021k
Citation KeySironi201218407