Titolo | Chemical Vapor Deposited Graphene-Based Derivative As High-Performance Hole Transport Material for Organic Photovoltaics |
---|---|
Tipo di pubblicazione | Articolo su Rivista peer-reviewed |
Anno di Pubblicazione | 2016 |
Autori | Capasso, A., Salamandra L., Faggio G., Dikonimos T., Buonocore F., Morandi V., Ortolani L., and Lisi N. |
Rivista | ACS Applied Materials and Interfaces |
Volume | 8 |
Paginazione | 23844-23853 |
ISSN | 19448244 |
Parole chiave | Blending, Charge transport layer, Chemical vapor deposited, Chemical vapor deposition, Chemical vapor deposition process, Conducting polymers, Film growth, Functionalized graphene, Graphene, Hole mobility, Hole transport layers, Hole transport materials, Organic photovoltaics, Organic solar cells, Solar cells, Solution-processed, Tin oxides, Vapor deposition |
Abstract | The development of efficient charge transport layers is a key requirement for the fabrication of efficient and stable organic solar cells. A graphene-based derivative with planar resistivity exceeding 105 Ω/S and work function of 4.9 eV is here produced by finely tuning the parameters of the chemical vapor deposition process on copper. After the growth, the film is transferred to glass/indium tin oxide and used as hole transport layer in organic solar cells based on a PBDTTT-C-T:[70]PCBM blend. The cells attained a maximum power conversion efficiency of 5%, matching reference cells made with state-of-the-art PEDOT:PSS as the hole transport layer. Our results indicate that functionalized graphene could represent an effective alternative to PEDOT:PSS as hole transport/electron blocking layer in solution-processed organic photovoltaics. © 2016 American Chemical Society. |
Note | cited By 0 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987788881&doi=10.1021%2facsami.6b06749&partnerID=40&md5=17d9e3201216f023c6c0ff361fc83182 |
DOI | 10.1021/acsami.6b06749 |
Citation Key | Capasso201623844 |