Titolo | Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall |
---|---|
Tipo di pubblicazione | Articolo su Rivista peer-reviewed |
Anno di Pubblicazione | 2016 |
Autori | De Canio, Gerardo, de Felice G., De Santis S., Giocoli A., Mongelli M., Paolacci F., and Roselli Ivan |
Rivista | Earthquake and Structures |
Volume | 10 |
Paginazione | 53-71 |
ISSN | 20927614 |
Parole chiave | Computer vision, Concrete beams and girders, Data handling, Displacement measurement, Finite element method, Frequency domain analysis, Grouting, image processing, Infrared devices, Instrument testing, Masonry materials, Modal analysis, Mortar, Optical data processing, Optical measurement, Optical systems, Passive markers, Reinforcement, Shaking tables, Steel reinforced grout, Structural damage monitoring, Time domain analysis, Transducers, Walls (structural partitions) |
Abstract | Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods. © 2016 Techno-Press, Ltd. |
Note | cited By 2 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957895386&doi=10.12989%2feas.2016.10.1.053&partnerID=40&md5=7761bfd70a888aede0224522c7017a71 |
DOI | 10.12989/eas.2016.10.1.053 |
Citation Key | DeCanio201653 |