Sorry, you need to enable JavaScript to visit this website.

Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species

TitleFunctional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2017
AuthorsFusaro, L., Palma A., Salvatori Elisabetta, Basile A., Maresca V., Karam E.A., and Manes F.
JournalPLoS ONE
Volume12
ISSN19326203
Keywordsarticle, avoidance behavior, controlled study, drug effects, Fraxinus, Fraxinus ornus, gas exchange, light harvesting system, metabolism, Nitrogen, Nitrogen deposition, Nitrogen fixation, nitrogen oxide, nonhuman, oak, oxidoreductase, Ozone, photosynthesis, physiology, plant leaf, Plant leaves, Plant response, Quercus, Quercus ilex, reactive oxygen metabolite, Reactive Oxygen Species, ribulose phosphate, senescence, tree
Abstract

The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments. © 2017 Fusaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Notes

cited By 10

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85030482237&doi=10.1371%2fjournal.pone.0185836&partnerID=40&md5=6c171928cdca1cc3ea074b48df4de9c4
DOI10.1371/journal.pone.0185836
Citation KeyFusaro2017