Sorry, you need to enable JavaScript to visit this website.

A summer climate regime over Europe modulated by the North Atlantic Oscillation

TitleA summer climate regime over Europe modulated by the North Atlantic Oscillation
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2011
AuthorsWang, G., Dolman A.J., and Alessandri Andrea
JournalHydrology and Earth System Sciences
Volume15
Pagination57-64
ISSN10275606
Keywordsannual variation, Atmospheric pressure, Circulation patterns, climate variation, Climatology, drought, Europe, extreme event, Extreme events, Functional response, heating, Highly-correlated, Interannual variability, Maximum temperature, Moisture state, North Atlantic Oscillation, North Atlantic oscillations, Numerical studies, Palmer drought severity indices, precipitation (climatology), Precipitation deficits, Seasonal prediction, Seasonality, Self-calibrating, Soil moisture, Summer climate, Summer heat, Summer temperature, Winter precipitation
Abstract

Recent summer heat waves in Europe were found to be preceded by precipitation deficits in winter. Numerical studies suggest that these phenomena are dynamically linked by land-atmosphere interactions. However, there exists as yet no complete observational evidence that connects summer climate variability to winter precipitation and the relevant circulation patterns. In this paper, we investigate the functional responses of summer mean and maximum temperature (June-August, Tmean and Tmax) as well as soil moisture proxied by the self-calibrating Palmer drought severity index (scPDSI) to preceding winter precipitation (January- March, PJFM) for the period 1901-2005. All the analyzed summer fields show distinctive responses to PJFM over the Mediterranean. We estimate that 10∼15% of the interannual variability of Tmax and Tmean over the Mediterranean is statistically forced by PJFM. For the scPDSI this amounts to 10∼25%. Further analysis shows that these responses are highly correlated to the North Atlantic Oscillation (NAO) regime over the Mediterranean. We suggest that NAO modulates European summer temperature by controlling winter precipitation that initializes the moisture states that subsequently interact with temperature. This picture of relations between European summer climate and NAO as well as winter precipitation suggests potential for improved seasonal prediction of summer climate for particular extreme events. © 2011 Author(s).

Notes

cited By 21

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78651332635&doi=10.5194%2fhess-15-57-2011&partnerID=40&md5=03cc264c991c3da2614430ff444b66f0
DOI10.5194/hess-15-57-2011
Citation KeyWang201157