Title | General two-dimensional hypercomplex numbers |
---|---|
Publication Type | Articolo su Rivista peer-reviewed |
Year of Publication | 2008 |
Authors | Catoni, F., Boccaletti D., Cannata R., Catoni V., Nichelatti E., and Zampetti P. |
Journal | Frontiers in Mathematics |
Volume | 2008 |
Pagination | 73-86 |
ISSN | 16608046 |
Abstract | In this chapter we study the Euclidean and pseudo-Euclidean geometries associated with the general two-dimensional hypercomplex variable, i.e., the algebraic ring (see Section 2.2) z = x + u y; u2 = α + uβ x α β ∈ R; u ∉ R, 6.0.1 and we show that in geometries generated by these numbers, ellipses and general hyperbolas play the role which circles and equilateral hyperbolas play in Euclidean and in pseudo-Euclidean planes, respectively. © 2008 Birkhäuser Verlag AG. |
Notes | cited By 0 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-46949091078&doi=10.1007%2f978-3-7643-8614-6_6&partnerID=40&md5=0047155115785d257f823f154bca6253 |
DOI | 10.1007/978-3-7643-8614-6_6 |
Citation Key | Catoni200873 |