Sorry, you need to enable JavaScript to visit this website.

The Ma-Miss instrument performance, I: Analysis of rocks powders by Martian VNIR spectrometer

TitleThe Ma-Miss instrument performance, I: Analysis of rocks powders by Martian VNIR spectrometer
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2014
AuthorsDe Angelis, S., De Sanctis M.C., Ammannito E., Carli C., Di Iorio Tatiana, and Altieri F.
JournalPlanetary and Space Science
Volume101
Pagination89-107
ISSN00320633
Keywordsdrilling, ExoMars, Goniometers, Grain size and shape, High spatial resolution, Instrument performance, Laboratory breadboards, Ma-Miss, Mars, Minerals, Optical fibers, Reflection, Soils, Spectrometers, Spectroscopic information, Visible and near infrared
Abstract

The ExoMars/Ma-Miss instrument is a miniaturized spectrometer that will observe the Martian subsoil in the visible and near infrared range (VNIR, 0.4-2.2 μm) with high spatial resolution, 120 μm. It will be integrated in the Drilling system of the Pasteur Rover of the ExoMars 2018 mission, and will acquire reflectance spectra of the borehole wall performed by the Drill, at various depths down to 2 m. The laboratory breadboard instrument consists of the main subsystems: illumination system, optical fibres for illumination and signal collection, and optical elements for light focusing. It has been interfaced with a commercial spectrometer, the FieldSpec Pro©. The primary aim of this work is to compare the VNIR measurements and spectral parameters derived from the spectra acquired with the Ma-Miss breadboard and with a second laboratory setup. Reflectance spectra have been acquired on a set of six rock powder samples representative of Martian soil. Nine different grain size ranges of each sample have been measured with the breadboard and five spectral parameters were used to explore the Ma-Miss spectra. Those data were compared with spectra acquired by the FieldSpec Pro® coupled with a goniometer. The analyses of these spectral parameters evidence the correlation between the VNIR continuum slope and the grain size, and the correlation between the reflectance and the grain size; both the parameters tend to decrease as the grain size increases. The trends observed with Ma-Miss breadboard for NIR and VNIR slopes and for the reflectance are clearly consistent with the trends observed with the spectro-goniometer setup, although small differences are seen that can be explained with the different viewing geometries of the two instruments. Ma-Miss proves to have great capabilities for extracting spectroscopic information to constrain the mineralogy and some physical parameters of the analysed material. © 2014 Elsevier Ltd.

Notes

cited By 2

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84906948510&doi=10.1016%2fj.pss.2014.06.010&partnerID=40&md5=4a8aed5ded1d2d06687808f11893efbd
DOI10.1016/j.pss.2014.06.010
Citation KeyDeAngelis201489