Sorry, you need to enable JavaScript to visit this website.

The role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait

TitleThe role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2016
AuthorsDroghei, R., Falcini F., Casalbore D., Martorelli E., Mosetti R., Sannino Gianmaria, Santoleri R., and Chiocci F.L.
JournalScientific Reports
Volume6
ISSN20452322
Abstract

Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary "current" that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities. © The Author(s) 2016.

Notes

cited By 0

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994259791&doi=10.1038%2fsrep36376&partnerID=40&md5=9a23b29c6e2462c160792c21b7d138f1
DOI10.1038/srep36376
Citation KeyDroghei2016