Sorry, you need to enable JavaScript to visit this website.

A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus

TitleA plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2013
AuthorsGrasso, S., Lico Chiara, Imperatori F., and Santi L.
JournalTransgenic Research
Volume22
Pagination519 - 535
Date Published2013
ISBN Number09628819 (ISSN)
Keywordsarticle, biotin, chemistry, Genetic engineering, Genetically Modified, genetics, hybrid protein, Lycopersicon esculentum, lysine, metabolism, methodology, Nanobiotechnology, nanoparticle, Nanoparticles, nanotechnology, Nanovector, Nicotiana benthamiana, Plant made pharmaceutical, Plants, Recombinant Fusion Proteins, Tobacco, Tomato bushy stunt virus, Tombusvirus, transgenic plant, Viral nanoparticle, Virion, Virology
Abstract

Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized. © 2012 Springer Science+Business Media Dordrecht.

Notes

Cited By :2Export Date: 17 July 2015CODEN: TRSEECorrespondence Address: Santi, L.; Department of Agriculture, Forests, Nature and Energy (DAFNE), Università della Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; email: luca.santi@unitus.itChemicals/CAS: biotin, 58-85-5; lysine, 56-87-1, 6899-06-5, 70-54-2; Biotin, 6SO6U10H04; Lysine, K3Z4F929H6; Recombinant Fusion ProteinsReferences: Aramayo, R., Merigoux, C., Larquet, E., Bron, P., Perez, J., Dumas, C., Vachette, P., Boisset, N., Divalent ion-dependent swelling of tomato bushy stunt virus: a multi-approach study (2005) Biochim Biophys Acta, 1724 (3), pp. 345-354. , doi:10.1016/j.bbagen.2005.05.020;Ashley, C.E., Carnes, E.C., Phillips, G.K., Durfee, P.N., Buley, M.D., Lino, C.A., Padilla, D.P., Peabody, D.S., Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles (2011) ACS Nano, 5 (7), pp. 5729-5745. , doi:10.1021/nn201397z; Avesani, L., Marconi, G., Morandini, F., Albertini, E., Bruschetta, M., Bortesi, L., Pezzotti, M., Porceddu, A., Stability of Potato virus X expression vectors is related to insert size: implications for replication models and risk assessment (2007) Transgenic Res, 16 (5), pp. 587-597. , doi:10.1007/s11248-006-9051-1; Bar, H., Yacoby, I., Benhar, I., Killing cancer cells by targeted drug-carrying phage nanomedicines (2008) BMC Biotechnol, 8, p. 37. , doi:10.1186/1472-6750-8-37; Baulcombe, D.C., Chapman, S., Santa Cruz, S., Jellyfish green fluorescent protein as a reporter for virus infections (1995) Plant J, 7 (6), pp. 1045-1053; Beterams, G., Bottcher, B., Nassal, M., Packaging of up to 240 subunits of a 17 kDa nuclease into the interior of recombinant hepatitis B virus capsids (2000) FEBS Lett, 481 (2), pp. 169-176; Burgyan, J., Russo, M., Tombusvirus isolation and RNA extraction (1998) Methods Mol Biol, 81, pp. 225-230. , doi:10.1385/0-89603-385-6:225; Chen, Q., Lai, H., Plant-derived virus-like particles as vaccines (2013) Hum Vaccines, 9 (1). , doi: 10. 4161/hv. 22218; Chen, C., Daniel, M.C., Quinkert, Z.T., De, M., Stein, B., Bowman, V.D., Chipman, P.R., Dragnea, B., Nanoparticle-templated assembly of viral protein cages (2006) Nano Lett, 6 (4), pp. 611-615. , doi:10.1021/nl0600878; Chiang, C.M., Roeder, R.G., Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution (1993) Pept Res, 6 (2), pp. 62-64; Chowrira, B.M., Pavco, P.A., McSwiggen, J.A., In vitro and in vivo comparison of hammerhead, hairpin, and hepatitis delta virus self-processing ribozyme cassettes (1994) J Biol Chem, 269 (41), pp. 25856-25864; Comellas-Aragones, M., Engelkamp, H., Claessen, V.I., Sommerdijk, N.A., Rowan, A.E., Christianen, P.C., Maan, J.C., Nolte, R.J., A virus-based single-enzyme nanoreactor (2007) Nat Nanotechnol, 2 (10), pp. 635-639. , doi:10.1038/nnano.2007.299; Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., Goodman, H.M., Nopaline synthase: transcript mapping and DNA sequence (1982) J Mol Appl Genet, 1 (6), pp. 561-573; Douglas, T., Young, M., Host-guest encapsulation of materials by assembled virus protein cages (1998) Nature, 393 (6681), pp. 152-155; Fowler, C.E., Shenton, W., Stubbs, G., Mann, S., Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles (2001) Adv Mater, 13, pp. 1266-1269; Gleiter, S., Lilie, H., Coupling of antibodies via protein Z on modified polyoma virus-like particles (2001) Protein Sci, 10 (2), pp. 434-444. , doi:10.1110/ps.31101; Gonzalez, M.J., Plummer, E.M., Rae, C.S., Manchester, M., Interaction of Cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo (2009) PLoS One, 4 (11), pp. e7981. , doi:10.1371/journal.pone.0007981; Goodin, M.M., Zaitlin, D., Naidu, R.A., Lommel, S.A., Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions (2008) Mol Plant Microbe Interact, 21 (8), pp. 1015-1026. , doi:10.1094/MPMI-21-8-1015; Gopinath, K., Wellink, J., Porta, C., Taylor, K.M., Lomonossoff, G.P., van Kammen, A., Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants (2000) Virology, 267 (2), pp. 159-173. , doi:10.1006/viro.1999.0126; Grasso, S., Santi, L., Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches (2010) Int J Physiol Pathophysiol Pharmacol, 2 (2), pp. 161-178; Hajitou, A., Trepel, M., Lilley, C.E., Soghomonyan, S., Alauddin, M.M., Marini, F.C.R., Restel, B.H., Arap, W., A hybrid vector for ligand-directed tumor targeting and molecular imaging (2006) Cell, 125 (2), pp. 385-398. , doi:10.1016/j.cell.2006.02.042; Harrison, S.C., Olson, A.J., Schutt, C.E., Winkler, F.K., Bricogne, G., Tomato bushy stunt virus at 2.9 Å resolution (1978) Nature, 276 (5686), pp. 368-373; Haviv, S., Galiakparov, N., Goszczynski, D.E., Batuman, O., Czosnek, H., Mawassi, M., Engineering the genome of Grapevine virus A into a vector for expression of proteins in herbaceous plants (2006) J Virol Methods, 132 (1-2), pp. 227-231. , doi:10.1016/j.jviromet.2005.10.020; Hearne, P.Q., Knorr, D.A., Hillman, B.I., Morris, T.J., The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus (1990) Virology, 177 (1), pp. 141-151; Hsu, C., Singh, P., Ochoa, W., Manayani, D.J., Manchester, M., Schneemann, A., Reddy, V.S., Characterization of polymorphism displayed by the coat protein mutants of tomato bushy stunt virus (2006) Virology, 349 (1), pp. 222-229. , doi:10.1016/j.virol.2006.02.038; Johnson, J.E., Chiu, W., Structures of virus and virus-like particles (2000) Curr Opin Struct Biol, 10 (2), pp. 229-235; Kawarasaki, Y., Yamada, Y., Ichimori, M., Shinbata, T., Kohda, K., Nakano, H., Yamane, T., Stabilization of affinity-tagged recombinant protein during/after its production in a cell-free system using wheat-germ extract (2003) J Biosci Bioeng, 95 (3), pp. 209-214; Kolodziej, K.E., Pourfarzad, F., de Boer, E., Krpic, S., Grosveld, F., Strouboulis, J., Optimal use of tandem biotin and V5 tags in ChIP assays (2009) BMC Mol Biol, 10, p. 6. , doi:10.1186/1471-2199-10-6; Kruse, J., Kruse, K.M., Witz, J., Chauvin, C., Jacrot, B., Tardieu, A., Divalent ion-dependent reversible swelling of tomato bushy stunt virus and organization of the expanded virion (1982) J Mol Biol, 162 (2), pp. 393-414. , doi:0022-2836(82)90534-4; Kumagai, M.H., Turpen, T.H., Weinzettl, N., Della-Cioppa, G., Turpen, A.M., Donson, J., Hilf, M.E., Chow, T.P., Rapid, high-level expression of biologically active alpha-trichosanthin in transfected plants by an RNA viral vector (1993) Proc Natl Acad Sci USA, 90 (2), pp. 427-430; Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-685; Lai, H., Chen, Q., Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current good manufacture practice regulations (2012) Plant Cell Rep, 31 (3), pp. 573-584; Laize, V., Ripoche, P., Tacnet, F., Purification and functional reconstitution of the human CHIP28 water channel expressed in Saccharomyces cerevisiae (1997) Protein Expr Purif, 11 (3), pp. 284-288. , doi:10.1006/prep.1997.0798; Lewis, J.D., Destito, G., Zijlstra, A., Gonzalez, M.J., Quigley, J.P., Manchester, M., Stuhlmann, H., Viral nanoparticles as tools for intravital vascular imaging (2006) Nat Med, 12 (3), pp. 354-360. , doi:10.1038/nm1368; Lico, C., Capuano, F., Renzone, G., Donini, M., Marusic, C., Scaloni, A., Benvenuto, E., Baschieri, S., Peptide display on Potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles (2006) J Gen Virol, 87 (Pt 10), pp. 3103-3112. , doi:10.1099/vir.0.82097-0; Lico, C., Chen, Q., Santi, L., Viral vectors for production of recombinant proteins in plants (2008) J Cell Physiol, 216 (2), pp. 366-377. , doi:10.1002/jcp.21423; Lico, C., Mancini, C., Italiani, P., Betti, C., Boraschi, D., Benvenuto, E., Baschieri, S., Plant-produced Potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice (2009) Vaccine, 27 (37), pp. 5069-5076. , doi:10.1016/j.vaccine.2009.06.045; Lico, C., Santi, L., Twyman, R.M., Pezzotti, M., Avesani, L., The use of plants for the production of therapeutic human peptides (2012) Plant Cell Rep, 31 (3), pp. 439-451. , doi:10.1007/s00299-011-1215-7; Liu, L., Canizares, M.C., Monger, W., Perrin, Y., Tsakiris, E., Porta, C., Shariat, N., Lomonossoff, G.P., Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants (2005) Vaccine, 23 (15), pp. 1788-1792. , doi:10.1016/j.vaccine.2004.11.006; Loo, L., Guenther, R.H., Basnayake, V.R., Lommel, S.A., Franzen, S., Controlled encapsidation of gold nanoparticles by a viral protein shell (2006) J Am Chem Soc, 128 (14), pp. 4502-4503. , doi:10.1021/ja057332u; Loo, L., Guenther, R.H., Lommel, S.A., Franzen, S., Infusion of dye molecules into red clover necrotic mosaic virus (2008) Chem Commun (Camb), 1, pp. 88-90; Lucas, R.W., Larson, S.B., McPherson, A., The crystallographic structure of brome mosaic virus (2002) J Mol Biol, 317 (1), pp. 95-108. , doi:10.1006/jmbi.2001.5389; Ma, Y., Nolte, R.J., Cornelissen, J.J., Virus-based nanocarriers for drug delivery (2012) Adv Drug Deliv Rev, 64 (9), pp. 811-825. , doi:10.1016/j.addr.2012.01.005; McCormick, A.A., Corbo, T.A., Wykoff-Clary, S., Nguyen, L.V., Smith, M.L., Palmer, K.E., Pogue, G.P., TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models (2006) Vaccine, 24 (40-41), pp. 6414-6423. , doi:10.1016/j.vaccine.2006.06.003; Montague, N.P., Thuenemann, E.C., Saxena, P., Saunders, K., Lenzi, P., Lomonossoff, G.P., Recent advances of cowpea mosaic virus-based particle technology (2011) Hum Vaccin, 7 (3), pp. 383-390. , doi:14989; Murata, Y., Lightfoote, P.M., Rose, R.C., Walsh, E.E., Antigenic presentation of heterologous epitopes engineered into the outer surface-exposed helix 4 loop region of human papillomavirus L1 capsomeres (2009) Virol J, 6, p. 81. , doi:10.1186/1743-422X-6-81; Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chiang, Y.M., Belcher, A.M., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes (2006) Science, 312 (5775), pp. 885-888. , doi:10.1126/science.1122716; Newton-Northup, J.R., Figueroa, S.D., Quinn, T.P., Deutscher, S.L., Bifunctional phage-based pretargeted imaging of human prostate carcinoma (2009) Nucl Med Biol, 36 (7), pp. 789-800. , doi:10.1016/j.nucmedbio.2009.04.010; Odell, J.T., Nagy, F., Chua, N.H., Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter (1985) Nature, 313 (6005), pp. 810-812; Olson, A.J., Bricogne, G., Harrison, S.C., Structure of tomato bushy stunt virus IV. The virus particle at 2.9 Å resolution (1983) J Mol Biol, 171 (1), pp. 61-93; Prasuhn Jr., D.E., Yeh, R.M., Obenaus, A., Manchester, M., Finn, M.G., Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition (2007) Chem Commun (Camb), 12, pp. 1269-1271. , doi:10.1039/b615084e; Raja, K.S., Wang, Q., Gonzalez, M.J., Manchester, M., Johnson, J.E., Finn, M.G., Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus (2003) Biomacromolecules, 4 (3), pp. 472-476. , doi:10.1021/bm025740; Ren, Y., Wong, S.M., Lim, L.Y., In vitro-reassembled plant virus-like particles for loading of polyacids (2006) J Gen Virol, 87 (Pt 9), pp. 2749-2754. , doi:10.1099/vir.0.81944-0; Ren, Y., Wong, S.M., Lim, L.Y., Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin (2007) Bioconjug Chem, 18 (3), pp. 836-843. , doi:10.1021/bc060361p; Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor: Cold Spring Harbor Laboratory Press; Santi, L., Huang, Z., Mason, H., Virus-like particles production in green plants (2006) Methods, 40 (1), pp. 66-76. , doi:10.1016/j.ymeth.2006.05.020; Santi, L., Batchelor, L., Huang, Z., Hjelm, B., Kilbourne, J., Arntzen, C.J., Chen, Q., Mason, H.S., An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles (2008) Vaccine, 26 (15), pp. 1846-1854. , doi:10.1016/j.vaccine.2008.01.053; Scholthof, H.B., Rapid delivery of foreign genes into plants by direct rub-inoculation with intact plasmid DNA of a tomato bushy stunt virus gene vector (1999) J Virol, 73 (9), pp. 7823-7829; Scholthof, H.B., Scholthof, K.B., Jackson, A.O., Plant virus gene vectors for transient expression of foreign proteins in plants (1996) Annu Rev Phytopathol, 34, pp. 299-323. , doi:10.1146/annurev.phyto.34.1.299; Singh, P., Tumor targeting using canine parvovirus nanoparticles (2009) Curr Top Microbiol Immunol, 327, pp. 123-141; Smith, M.L., Lindbo, J.A., Dillard-Telm, S., Brosio, P.M., Lasnik, A.B., McCormick, A.A., Nguyen, L.V., Palmer, K.E., Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications (2006) Virology, 348 (2), pp. 475-488. , doi:10.1016/j.virol.2005.12.039; Speir, J.A., Munshi, S., Wang, G., Baker, T.S., Johnson, J.E., Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy (1995) Structure, 3 (1), pp. 63-78; Steinmetz, N.F., Lin, T., Lomonossoff, G.P., Johnson, J.E., Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology (2009) Curr Top Microbiol Immunol, 327, pp. 23-58; Steinmetz, N.F., Mertens, M.E., Taurog, R.E., Johnson, J.E., Commandeur, U., Fischer, R., Manchester, M., Potato virus X as a novel platform for potential biomedical applications (2010) Nano Lett, 10 (1), pp. 305-312. , doi:10.1021/nl9035753; Stevenson, P., Sones, K.R., Gicheru, M.M., Mwangi, E.K., Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya (1995) Acta Trop, 59 (2), pp. 77-84. , doi:0001-706X(94)00080-K; Strable, E., Johnson, J.E., Finn, M.G., Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides (2004) Nano Lett, 4 (8), pp. 1385-1389. , doi:10.1021/nl0493850; Suttle, C.A., Viruses in the sea (2005) Nature, 437 (7057), pp. 356-361. , doi:10.1038/nature04160; Szittya, G., Salamon, P., Burgyan, J., The complete nucleotide sequence and synthesis of infectious RNA of genomic and defective interfering RNAs of TBSV-P (2000) Virus Res, 69 (2), pp. 131-136; Twyman, R.M., Host plants systems and expression strategies for molecular farming? (2005) Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins, pp. 191-216. , R. Fischer and S. Schillberg (Eds.), UK: Wiley-VCH Verlag GmbH & Co., KGaA; Twyman, R.M., Large-scale protein production in plants: host plants, systems and expression (2008) Protein Science Encyclopedia, , A. R. Fersht (Ed.), UK: Wiley; Tyulkina, L.G., Skurat, E.V., Frolova, O.Y., Komarova, T.V., Karger, E.M., Atabekov, I.G., New viral vector for superproduction of epitopes of vaccine proteins in plants (2011) Acta Naturae, 3 (4), pp. 73-82; van Houten, N.E., Zwick, M.B., Menendez, A., Scott, J.K., Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide (2006) Vaccine, 24 (19), pp. 4188-4200. , doi:10.1016/j.vaccine.2006.01.001; Wang, Q., Kaltgrad, E., Lin, T., Johnson, J.E., Finn, M.G., Natural supramolecular building blocks. Wild-type cowpea mosaic virus (2002) Chem Biol, 9 (7), pp. 805-811; Webster, D.E., Wang, L., Mulcair, M., Ma, C., Santi, L., Mason, H.S., Wesselingh, S.L., Coppel, R.L., Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system (2009) Plant Biotechnol J, 7 (9), pp. 846-855. , doi:10.1111/j.1467-7652.2009.00447.x; White, K.A., Nagy, P.D., Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination (2004) Prog Nucleic Acid Res Mol Biol, 78, pp. 187-226. , doi:10.1016/S0079-6603(04)78005-8; Work, L.M., Ritchie, N., Nicklin, S.A., Reynolds, P.N., Baker, A.H., Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control (2004) Gene Ther, 11 (16), pp. 1296-1300. , doi:10.1038/sj.gt.33022923302292; Wriggers, W., Chakravarty, S., Jennings, P.A., Control of protein functional dynamics by peptide linkers (2005) Biopolymers, 80 (6), pp. 736-746. , doi:10.1002/bip.20291; Yildiz, I., Shukla, S., Steinmetz, N.F., Applications of viral nanoparticles in medicine (2011) Curr Opin Biotechnol, 22 (6), pp. 901-908. , doi:10.1016/j.copbio.2011.04.020; Yildiz, I., Tsvetkova, I., Wen, A.M., Shukla, S., Masarapu, M.H., Dragnea, B., Steinmetz, N.F., Engineering of Brome mosaic virus for biomedical applications (2012) RSC Adv, 2, pp. 3670-3677. , doi:10.1039/C2RA01376B; Ziegler, A., Cowan, G.H., Torrance, L., Ross, H.A., Davies, H.V., Facile assessment of cDNA constructs for expression of functional antibodies in plants using the Potato virus X vector (2000) Mol Breed, 6, pp. 327-335

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877749467&partnerID=40&md5=1126c87b082bd836fe869dfc7d59f55b
Citation Key5383