Title | Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants |
---|---|
Publication Type | Articolo su Rivista peer-reviewed |
Year of Publication | 2015 |
Authors | Hehle, V.K., Lombardi R., van Dolleweerd C.J., Paul M.J., Di Micco P., Morea V., Benvenuto Eugenio, Donini Marcello, and Ma J.K.-C. |
Journal | Plant Biotechnology Journal |
Volume | 13 |
Pagination | 235 - 245 |
Date Published | 2015 |
ISBN Number | 14677644 (ISSN) |
Keywords | Molecular farming, Monoclonal antibodies, N-terminal sequencing, Nicotiana obtusifolia, Proteolysis |
Abstract | Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL/CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns ’a priori’ and designing novel stabilization strategies by site-specific mutagenesis. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd. |
Notes | Export Date: 16 July 2015Correspondence Address: Ma, J.K.-C.; Molecular Immunology Unit, Division of Clinical Sciences, St. George’s University of LondonUnited KingdomReferences: Ahn, J.W., Kim, M., Lim, J.H., Kim, G.T., Pai, H.S., Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development (2004) Plant J., 38, pp. 969-981;Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3389-3402; Badri, M.A., Rivard, D., Coenen, K., Michaud, D., Unintended molecular interactions in transgenic plants expressing clinically useful proteins: the case of bovine aprotinin traveling the potato leaf cell secretory pathway (2009) Proteomics, 9, pp. 746-756; Benchabane, M., Goulet, C., Rivard, D., Faye, L., Gomord, V., Michaud, D., Preventing unintended proteolysis in plant protein biofactories (2008) Plant Biotechnol. J., 6, pp. 633-648; Borsi, L., Carnemolla, B., Nicolò, G., Spina, B., Tanara, G., Zardi, L., Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues (1992) Int. J. Cancer, 52, pp. 688-692; Calarese, D.A., Scanlan, C.N., Zwick, M.B., Deechongkit, S., Mimura, Y., Kunert, R., Zhu, P., Wilson, I.A., Antibody domain exchange is an immunological solution to carbohydrate cluster recognition (2003) Science, 300, pp. 2065-2071; De Muynck, B., Navarre, C., Nizet, Y., Stadlmann, J., Boutry, M., Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells (2009) Transgenic Res., 18, pp. 467-482; De Muynck, B., Navarre, C., Boutry, M., Production of antibodies in plants: status after twenty years (2010) Plant Biotechnol. J., 8, pp. 529-563; De Neve, M., De Loose, M., Jacobs, A., Van Houdt, H., Kaluza, B., Weidle, U., Van Montagu, M., Depicker, A., Assembly of an antibody and its derived antibody fragment Nicotiana and Arabidopsis (1993) Transgenic Res., 2, pp. 227-237; De Wilde, C., De Neve, M., De Rycke, R., Bruyns, A.M., De Jaeger, G., Van Montagu, M., Depicker, A., Engler, G., Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana (1996) Plant Sci., 114, pp. 233-241; Delannoy, M., Alves, G., Vertommen, D., Ma, J., Boutry, M., Navarre, C., Identification of peptidases in Nicotiana tabacum leaf intercellular fluid (2008) Proteomics, 8, pp. 2285-2298; Fan, X., Brezski, R.J., Fa, M., Deng, H., Oberholtzer, A., Gonzalez, A., Dubinsky, W.P., An, Z., A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy (2012) Breast Cancer Res., 14, p. R116; Fitch, P.M., Howie, S.E., Wallace, W.A., Oxidative damage and TGF-β differentially induce lung epithelial cell sonic hedgehog and tenascin-C expression: implications for the regulation of lung remodelling in idiopathic interstitial lung disease (2011) Int. J. Exp. Pathol., 92, pp. 8-17; Gao, S.X., Zhang, Y., Stansberry-Perkins, K., Buko, A., Bai, S., Nguyen, V., Brader, M.L., Fragmentation of a highly purified monoclonal antibody attributed to residual CHO cell protease activity (2010) Biotechnol. Bioeng., 108, pp. 977-982; Gerhardt, S., Abbott, W.M., Hargreaves, D., Pauptit, R.A., Davies, R.A., Needham, M.R., Langham, C., Russell, C., Structure of IL-17A in complex with a potent, fully human neutralizing antibody (2009) J. Mol. Biol., 394, pp. 905-921; Goulet, C., Khalf, M., Sainsbury, F., D’Aoust, M.A., Michaud, D.A., Protease activity-depleted environment for heterologous proteins migrating towards the leaf cell Apoplast (2012) Plant Biotechnol. J., 1, pp. 1-12; Hehle, V.K., Paul, M.J., Drake, P.M., Ma, J.K., van Dolleweerd, C.J., Antibody degradation in tobacco plants: a predominantly apoplastic process (2011) BMC Biotechnol., 11, p. 128; Hellwig, S., Drossard, J., Twyman, R.M., Fischer, R., Plant cell cultures for the production of recombinant proteins (2004) Nat. Biotechnol., 22, pp. 1415-1422; Hiatt, A.C., Monoclonal antibodies, hybridoma technology and heterologous production systems (1991) Curr. Opin. Immunol., 3, pp. 229-232; van der Hoorn, R.A.L., Plant proteases: from phenotypes to molecular mechanisms (2008) Annu. Rev. Plant Biol., 59, pp. 191-223; Ishikawa, T., Ito, T., Endo, R., Nakagawa, K., Sawa, E., Wakamatsu, K., Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies (2010) Biol. Pharm. Bull., 33, pp. 1413-1417; Johnson, K.L., Faulkner, C., Jeffree, C.E., Ingram, G.C., The phytocalpain defective kernel 1 is a novel Arabidopsis growth regulator whose activity is regulated by proteolytic processing (2008) Plant Cell, 20, pp. 2619-2930; Komarnytsky, S., Borisjuk, N., Yakoby, N., Garvey, A., Raskin, I., Cosecretion of protease inhibitor stabilizes antibodies produced by plant roots (2006) Plant Physiol., 141, pp. 1185-1193; Komarova, T.V., Baschieri, S., Donini, M., Marusic, C., Benvenuto, E., Dorokhov, Y.L., Transient expression systems for plant-derived biopharmaceuticals (2010) Expert Rev. Vaccines, 9, pp. 859-876; Lombardi, R., Villani, M.E., Di Carli, M., Brunetti, P., Benvenuto, E., Donini, M., Optimisation of the purification process of a tumour-targeting antibody produced in N. benthamiana using vacuum-agroinfiltration (2010) Transgenic Res., 19, pp. 1083-1097; Lombardi, R., Donini, M., Villani, M.E., Brunetti, P., Fujiyama, K., Kajiura, H., Paul, M., Benvenuto, E., Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation (2012) Transgenic Res., 21, pp. 1005-1021; Ma, J.K., Lehner, T., Stabila, P., Fux, C.I., Hiatt, A., Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants (1994) Eur. J. Immunol., 24, pp. 131-138; Mandal, M.K., (2011), http://publica.fraunhofer.de/documents/N-180476.html, Improving tobacco (Nicotiana tabacum) suspension cells as a molecular farming platform: a protease knock down approach. Thesis DissertationMarusic, C., Nuttall, J., Buriani, G., Lico, C., Lombardi, R., Baschieri, S., Benvenuto, E., Frigerio, L., Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells (2007) BMC Biotechnol., 7, p. e12; Niemer, M., Mehofer, U., Torres Acosta, J.A., Verdianz, M., Henkel, T., Loos, A., Strasser, R., Mach, L., The human anti-HIV antibodies 2F5, 2G12 and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms (2014) Biotechnol. J., 9, pp. 493-500; Outchkourov, N.S., Rogelj, B., Strukelj, B., Jongsma, M.A., Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production (2003) Plant Physiol., 133, pp. 379-390; Pesquet, E., Plant proteases-from detection to function (2012) Physiol. Plant., 145, pp. 1-4; Rademacher, T., Sack, M., Arcalis, E., Stadlmann, J., Balzer, S., Altmann, F., Quendler, H., Stoger, E., Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans (2008) Plant Biotechnol. J., 6, pp. 189-201; Ramessar, K., Rademacher, T., Sack, M., Stadlmann, J., Platis, D., Stiegler, G., Labrou, N., Christou, P., Cost-effective production of a vaginal protein microbicide to prevent HIV transmission (2008) Proc. Natl Acad. Sci. USA, 105, pp. 3727-3732; Rawlings, N.D., Barrett, A.J., Bateman, A., MEROPS: the peptidase database (2010) Nucleic Acids Res., 38, pp. 227-233; Rita Costa, A., Elisa Rodrigues, M., Henriques, M., Azeredo, J., Oliveira, R., Guidelines to cell engineering for monoclonal antibody production (2010) Eur. J. Pharm. Biopharm., 74, pp. 127-138; Rivard, D., Anguenot, R., Brunelle, F., Le, V.Q., Vézina, L.P., Trépanier, S., Michaud, D., An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants (2006) Plant Biotechnol. J., 4, pp. 359-368; Rose, P.W., Beran, B., Bi, C., Bluhm, W.F., Dimitropoulos, D., Goodsell, D.S., Prlic, A., Bourne, P.E., The RCSB Protein Data Bank: redesigned web site and web services (2011) Nucleic Acids Res., 39, pp. D392-D401; Sainsbury, F., Lomonossoff, G.P., Extremely high-level and rapid transient protein production in plants without the use of viral replication (2008) Plant Physiol., 148, pp. 1212-1218; Saphire, E.O., Parren, P.W., Pantophlet, R., Zwick, M.B., Morris, G.M., Rudd, P.M., Dwek, R.A., Wilson, I.A., Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design (2001) Science, 293, pp. 1155-1159; Schaller, A., A cut above the rest: the regulatory function of plant proteases (2004) Planta, 220, pp. 183-197; Sharp, J.M., Doran, P.M., Characterization of monoclonal antibody fragments produced by plant cells (2001) Biotechnol. Bioeng., 73, pp. 338-346; Stevens, L.H., Stoopen, G.M., Elbers, I.J.W., Molthoff, J.W., Bakker, H.A.C., Lommen, A., Bosch, D., Jordi, W., Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco (2000) Plant Physiol., 124, pp. 173-182; Stoger, E., Ma, J.K.C., Fischer, R., Christou, P., Sowing the seeds of success: pharmaceutical proteins from plants (2005) Curr. Opin. Biotechnol., 16, pp. 167-173; Trkola, A., Purtscher, M., Muster, T., Ballaun, C., Buchacher, A., Sullivan, N., Srinivasan, K., Katinger, H., Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1 (1996) J. Virol., 70, pp. 1100-1108; Villani, M.E., Morgun, B., Brunetti, P., Marusic, C., Lombardi, R., Pisoni, I., Bacci, C., Donini, M., Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies (2009) Plant Biotechnol. J., 7, pp. 59-72; Vitale, A., Pedrazzini, E., Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor (2005) Mol. Interv., 5, pp. 216-225; Vlasak, J., Ionescu, R., Fragmentation of monoclonal antibodies (2011) mAbs, 3, pp. 253-263; Wongsamuth, R., Doran, P.M., Production of monoclonal antibodies by tobacco hairy roots (1997) Biotechnol. Bioeng., 54, pp. 401-415 |
URL | http://www.scopus.com/inward/record.url?eid=2-s2.0-84922753792&partnerID=40&md5=b3ee75e4974e55cdddd982836ce2fd1b |
Citation Key | 5324 |