Sorry, you need to enable JavaScript to visit this website.

Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform

TitleDetection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2015
AuthorsCastillo, G., Spinella K., Poturnayová A., Šnejdárková M., Mosiello Lucia, and Hianik T.
JournalFood Control
Volume52
Pagination9 - 18
Date Published2015
ISBN Number09567135 (ISSN)
KeywordsAflatoxin B1, Aptamers, Atomic force microscopy, Biosensor, Contaminated peanuts, Electrochemistry, PAMAM dendrimers, Zea mays
Abstract

We report an aptamer-based biosensor for detection of aflatoxin B1 (AFB1), a mycotoxin identified as contaminant in food. The sensor is assembled in a multilayer framework that utilizes cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for acquiring the signal response by means of redox indicators: K[Fe(CN)6]-3/-4. Poly (amidoamine) dendrimers of fourth generation (PAMAM G4) immobilized on gold electrode covered by cystamine, were employed for attachment of single stranded amino-modified DNA aptamers specific to AFB1. The cystamine-dendrimers (Cys-PAMAM) layers were compared with other immobilization platforms such as cystamine (Cys), 11-mercaptoundecanoic acid (MUA) and 11-mercaptoundecanoic acid-dendrimers (MUA-PAMAM), being the first approach the most appropriate for producing sensitive and reproducible signal in the range of concentrations 0.1-10nM AFB1. The sensor was validated in certified contaminated peanuts extract as well as in spiked samples of peanuts-corn snacks and the sensing response was evaluated and compared in terms of the matrix effect. The aptamer specificity was analyzed by testing the sensor in other mycotoxins such as aflatoxin B2 (AFB2) and ochratoxin A (OTA). The limit of detection achieved by this sensor was LOD=0.40±0.03nM, it was regenerable in 0.2M glycine-HCl and it did not lose its stability up to 60h storing at 4°C. Atomic Force Microscopy (AFM) studies were also performed for illustrating individual steps of biosensor assembly.

Notes

Export Date: 11 March 2015CODEN: FOOCECorrespondence Address: Hianik, T.; Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, SlovakiaReferences: Abdelhady, H.G., Allen, S., Davies, M.C., Roberts, C.J., Tendler, S.J.B., Williams, P.M., Atomic force microscopy studies of generation 4 poly(amidoamine)(PAMAM) dendrimers on functionalized surfaces (2004) Surface Science, 558, pp. 99-110;Ammida, N.H.S., Micheli, L., Piermarini, S., Moscone, D., Palleschi, G., Detection of aflatoxin B1 in barley: comparative study of immunosensor and HPLC (2006) Analytical Letters, 39, pp. 1559-1572; Arduini, F., Amine, A., Moscone, D., Palleschi, G., Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review) (2010) Microchimica Acta, 170, pp. 193-214; Balamurugan, S., Obubuafo, A., Soper, S.A., Spivak, D.A., Surface immobilization methods for aptamer diagnostic applications (2008) Analytical and Bioanalytical Chemistry, 390, pp. 1009-1021; Ben-Rejeb, I., Arduini, F., Arvinte, A., Amine, A., Gargouri, M., Micheli, L., Development of a bio-electrochemical assay for AFB1 detection in olive oil (2009) Biosensors and Bioelectronics, 24, pp. 1962-1968; Bennett, J.W., Keller, N.P., Mycotoxins and their prevention (1997) Fungal biotechnology, pp. 265-273. , Chapman and Hall, London, T. Anke (Ed.); Binder, E.M., Tan, L.M., Chin, L.J., Handl, J., Richard, J., Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients (2007) Animal Feed Science and Technology, 137, pp. 265-282; Blesa, J., Soriano, J.M., Molto, J.C., Mann, R., Manes, J., Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liquid chromatography (2003) Journal of Chromatography A, 1011, pp. 49-54; Boonen, J., Malysheva, S.V., Taevernier, L., Diana Di Mavungu, J., De Saeger, S., De Spiegeleer, B., Human skin penetration of selected model mycotoxins (2012) Toxicology, 301, pp. 21-32; Castillo, G., Lamberti, I., Mosiello, L., Hianik, T., Impedimetric DNA aptasensor for sensitive detection of ochratoxin A in food (2012) Electroanalysis, 24, pp. 512-520; Cavaliere, C., Foglia, P., Guarino, C., Nazzari, M., Samperi, R., Lagana, A., Determination of aflatoxins in olive oil by liquid chromatography-tandem mass spectrometry (2007) Analytica Chimica Acta, 596, pp. 141-148; Cheng, A.K.H., Sen, D., Yu, H.-Z., Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules (2009) Bioelectrochemistry, 77, pp. 1-12; Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (2006) Official Journal L 364 of 20.12.2006, pp. 5-31.5; Commission Regulation (EU) No 1058/2012 of 12 November 2012 amending Regulation (EC) No 1881/2006 as regards maximum levels for aflatoxins in dried figs Text with EEA relevance (2012) Official Journal L 313 of 13.11.2012, pp. 14-15; Commission Regulation (EU) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins (2010) Official Journal L 50 of 27.2.2010, pp. 8-126; Cuccioloni, M., Mozzicafreddo, M., Barocci, S., Ciuti, F., Pecorelli, I., Eleuteri, A.M., Biosensor-based screening method for the detection of aflatoxins B1-G1 (2008) Analytical Chemistry, 80, pp. 9250-9256; Ellington, A.D., Szostak, J.W., Invitro selection of RNA molecules that bind specific ligands (1990) Nature, 346, pp. 812-822; Evtugyn, G., Porfireva, A., Stepanova, V., Sitdikov, R., Stoikov, I., Nikolelis, D., Electrochemical aptasensor based on polycarboxylic macrocycle modified with neutral red for aflatoxin B1 detection (2014) Electroanalysis, 26, pp. 2100-2109; (2004) Worldwide regulations for mycotoxins in food and feed in 2003, , 0254-4725 FAO, Rome, Italy; Ferapontova, E.E., Gothelf, K.V., Recent advances in electrochemical aptamer-based sensor (2011) Current Organic Chemistry, 15, pp. 498-505; Guo, X., Fang, W., Nan, Z., Qiujiang, L., Haiwei, W., Hui, W., Development of an ultrasensitive aptasensor for the detection of aflatoxin B1 (2014) Biosensors and Bioelectronics, 56, pp. 340-344; He, J., Liu, Y., Fan, M., Liu, X., Isolation and identification of the DNA aptamer target to acetamiprid (2011) Journal of Agriculture and Food Chemistry, 59, pp. 1582-1586; Hermann, T., Patel, D.J., Adaptive recognition by nucleic acid aptamers (2000) Science, 287, pp. 820-825; Hianik, T., Wang, J., Review: electrochemical aptasensors - recent achievements and perspectives (2009) Electroanalysis, 21, pp. 1223-1235; Holcomb, M., Thompson, H.C., Cooper, W.M., Hopper, M.L., SFE extraction of aflatoxins (B1, B2, G1, and G2) from corn and analysis by HPLC (1996) The Journal of Supercritical Fluids, 9, pp. 118-121; Kikin, O., D’Antonio, L., Bagga, P.S., QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences (2006) Nucleic Acids Research, 34, pp. W676-W682; Klajnert, B., Bryszewska, M., Dendrimers: properties and applications (2001) Acta Biochimica Polonica, 48, pp. 199-208; Lee, J.O., So, H.M., Jeon, E.K., Chang, H., Won, K., Kim, Y.H., Aptamers as molecular recognition elements for electrochemical nanobiosensors (2008) Analytical and Bioanalytical Chemistry, 390, pp. 1023-1032; Li, S.C., Chen, J.H., Cao, H., Yao, D.S., Liu, D.L., Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes (2011) Food Control, 22, pp. 43-49; Li, J., Piehler, L.T., Qin, D., Baker, J.R., Tomalia, D.A., Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy (2000) Langmuir, 16, pp. 5613-5616; Liu, Y., Qin, Z.H., Wu, X.F., Jiang, H., Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode (2006) Biochemical Engineering Journal, 32, pp. 211-217; Marin, S., Ramos, A.J., Cano-Sancho, G., Sanchis, V., Mycotoxins: occurrence, toxicology, and exposure assessment (2013) Food and Chemical Toxicology, 60, pp. 218-237; Miodek, A., Castillo, G., Hianik, T., Korri-Youssoufi, H., Electrochemical aptasensor of human cellular prion based on multiwalled carbon nanotubes modified with dendrimers: a platform for connecting redox markers and aptamers (2013) Analytical Chemistry, 85, pp. 7704-7712; Miodek, A., Castillo, G., Hianik, T., Korri-Youssoufi, H., Electrochemical aptasensor of cellular prion protein based on modified polypyrrole with redox dendrimers (2014) Biosensors and Bioelectronics, 56, pp. 104-111; Neidle, S., (2002) Nucleic acid structure and recognition, , Oxford University Press Inc, New York; (2013) Aptamer catalogue, , http://neoventures.ca/aptamer-database/, 25 May 2013; Owino, J.H.O., Arotiba, O.A., Hendricks, N., Songa, E.A., Jahed, N., Waryo, T.T., Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1 (2008) Sensors, 8, pp. 8262-8274; Owino, J.H.O., Ignaszak, A., Al-Ahmed, A., Baker, P.G.L., Alemu, H., Ngila, J.C., Modelling of the impedimetric responses of an aflatoxin B1 immunosensor prepared on an electrosynthetic polyaniline platform (2007) Analytical and Bioanalytical Chemistry, 388, pp. 1069-1074; O’Sullivan, C.K., Aptasensors - the future of biosensing (2002) Analytical and Bioanalytical Chemistry, 372, pp. 44-48; Palchetti, I., Mascini, M., Electroanalytical biosensors and their potential for food pathogen and toxin detection (2008) Analytical and Bioanalytical Chemistry, 391, pp. 455-471; Paniel, N., Radoi, A., Marty, J.L., Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk (2010) Sensors, 10, pp. 9349-9448; Park, J.H., Kim, Y.-P., Kim, I.-H., Ko, S., Rapid detection of aflatoxin B1 by a bifunctional protein crosslinker-based surface plasmon resonance biosensor (2014) Food Control, 36, pp. 183-190; Phillips, J.A., Xu, Y., Xia, Z., Fan, Z.H., Tan, W., Enrichment of cancer cells using aptamers immobilized on a microfluidic channel (2009) Analytical Chemistry, 81, pp. 1033-1039; Piermarini, S., Micheli, L., Ammida, N.H., Palleschi, G., Moscone, D., Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection (2007) Biosensors and Bioelectronics, 22, pp. 1434-1440; Piermarini, S., Volpe, G., Micheli, L., Moscone, D., Palleschi, G., An ELIME-array for detection of aflatoxin B1 in corn samples (2009) Food Control, 20, pp. 371-375; Piermarini, S., Volpe, G., Ricci, F., Micheli, L., Moscone, D., Palleschi, G., Rapid screening electrochemical methods for aflatoxin B1 and type-A trichothecenes: a preliminary study (2007) Analytical Letters, 40, pp. 1333-1346; Pohanka, M., Musilek, K., Kuca, K., Evaluation of aflatoxin B1-acetylcholinesterase dissociation kinetic using the amperometric biosensor technology: Prospect for toxicity mechanism (2010) Protein and Peptide Letters, 17, pp. 340-342; Radi, A.E., Acero Sanchez, J.L., Baldrich, E., O’Sullivan, C.K., Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor (2006) Journal of the American Chemical Society, 128, pp. 117-124; Rankin, C.J., Fuller, E.N., Hamor, K.H., Gabarra, S.A., Shields, T.P., Asimple fluorescent biosensor for theophylline based on its RNA aptamer (2006) Nucleosides, Nucleotides and Nucleic Acids, 25, pp. 1407-1424; Roch, O.G., Blunden, G., Coker, R.D., Nawaz, S., The validation of a solid phase clean-up procedure for the analysis of aflatoxins in groundnut cake using HPLC (1995) Food Chemistry, 52, pp. 93-98; Rodriguez, M.C., Kawde, A.-N., Wang, J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge (2005) Chemical Communications, 34, pp. 4267-4269; Rupcich, N., Nutiu, R., Li, Y., Brennan, J.D., Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica (2005) Analytical Chemistry, 77, pp. 4300-4307; Rupcich, N., Nutiu, R., Li, Y., Brennan, J.D., Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer (2006) Angewandte Chemie International Edition, 45, pp. 3295-3299; Sharma, M., Marquez, C., Determination of aflatoxins in domestic pet foods (dog and cat) using immunoaffinity column and HPLC (2001) Animal Feed Science and Technology, 93, pp. 109-114; Shim, W.B., Kim, M.J., Mun, H., Kim, M.G., An aptamer-based dipstick assay for the rapid and simple detection of aflatoxinB1 (2014) Biosensors and Bioelectronics, 62, pp. 288-294; Shim, W.B., Mun, H., Joung, H.A., Ofori, J.A., Chung, D.H., Kim, M.G., Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples (2014) Food Control, 36, pp. 30-35; So, H.M., Won, K., Kim, Y.H., Kim, B.K., Ryu, B.H., Na, P.S., Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements (2005) Journal of the American Chemical Society, 127, pp. 11906-11907; Tan, Y., Chu, X., Shen, G.L., Yu, R.Q., Asignal-amplified electrochemical immunosensor for aflatoxin B1 determination in rice (2009) Analytical Biochemistry, 387, pp. 82-86; Tang, D.P., Zhong, Z.Y., Niessner, R., Knopp, D., Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food (2009) Analyst, 34, pp. 1554-1560; Vidal, J.C., Bonel, L., Ezquerra, A., Hernández, S., Bertolín, J.R., Cubel, C., Electrochemical affinity biosensors for detection of mycotoxins: a review (2013) Biosensors and Bioelectronics, 49, pp. 146-158; Wang, Y., Liu, N., Ning, B., Liu, M., Lv, Z., Sun, Z., Simultaneous and rapid detection of six different mycotoxins using an immunochip (2012) Biosensors and Bioelectronics, 34, pp. 44-50; Wang, Y., Ning, B., Peng, Y., Bai, J., Liu, M., Fan, X., Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut (2013) Biosensors and Bioelectronics, 41, pp. 391-396; Wang, Z., Wilkop, T., Xu, D., Dong, Y., Ma, G., Cheng, Q., Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips (2007) Analytical Bioanalytical Chemistry, 389, pp. 819-825; Wang, X., Zhou, J., Yun, W., Xiao, S., Chang, Z., He, P., Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement (2007) Analytica Chimica Acta, 598, pp. 242-248; Willner, I., Zayats, M., Electronic aptamer-based sensors (2007) Angewandte Chemie International Edition, 46, pp. 6408-6418; Zaijun, L., Zhongyun, W., Xiulan, S., Yinjun, F., Peipei, C., Asensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel-ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen (2010) Talanta, 80, pp. 1632-1637; Zayats, M., Huang, Y., Gill, R., Ma, C.A., Willner, I., Label-free and reagentless aptamer-based sensors for small molecules (2006) Journal of the American Chemical Society, 128, pp. 13666-13667; Zhang, Z., Yang, W., Wang, J., Yang, C.H., Yang, F., Yang, X., Asensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer (2009) Talanta, 78, pp. 1240-1245; Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Research, 31, pp. 3406-3415

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921288599&partnerID=40&md5=2a323337057fb363e7e75c929f810e9a
Citation Key5038