Title | Energy Performance, Environmental Impacts and Costs of a Drying System: Life Cycle Analysis of Conventional and Heat Recovery Scenarios |
---|---|
Publication Type | Articolo su Rivista peer-reviewed |
Year of Publication | 2023 |
Authors | Urbano, D.G., Aquino A., and Scrucca Flavio |
Journal | Energies |
Volume | 16 |
ISSN | 19961073 |
Keywords | Drying, Drying air, Drying systems, Energy analysis, energy efficiency, Energy performance, Energy utilization, LCA, LCC, life cycle, life cycle analysis, performance, Renewable fuels, System life cycle, Waste heat |
Abstract | High energy consumption is one of the main problems of drying, a critical process for many industrial sectors. The optimization of drying energy use results in significant energy saving and has become a topic of interest in recent decades. We investigate benefits of heat recovery in a convective drying system by comparing two different scenarios. The Baseline Scenario is a conventional industrial dryer, and Scenario 1 includes the preheating of drying air by exhausts from the drying chamber. We show that the energy efficiency of the drying cycle is strictly related to the properties of the dried material and operative conditions, and performance improves significantly (by 59% to 87%) when installing a heat recovery unit (Scenario 1). Additionally, the temperature of drying air affects performance. We assess both scenarios by LCA analysis, measuring the environmental impacts and externalities of four different fuels (natural gas, light fuel oil, biomethane, and hardwood chips). Our findings indicate that heat recovery reduces environmental impacts, both when fossil and renewable fuels feed the system, but unexpected impact arises for some categories when renewable fuels are used. © 2023 by the authors. |
Notes | cited By 0 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147855011&doi=10.3390%2fen16031523&partnerID=40&md5=f4f90bb1e44b3502fdfc9f2cf002b3e6 |
DOI | 10.3390/en16031523 |
Citation Key | Urbano2023 |